知乎 on MSN
如何快速理解PyTorch自动梯度(Autograd)的原理?
核心原理似乎是一道编程题:在无环有向图(Directed Graph)中, 每个节点记录了所有前向节点。自动梯度相当于:从叶子结点出发,使用拓扑排序遍历所有父节点,每个节点上存有一个函数,当遍历该节点时,调用函数更新节点上的一个数值。 题中提到的“一个函数”是反向求导函数,“一个数值”即梯度。 原理大概就是这个,下面展开讲一下。 先看两个基本问题: ...
When converting a PyTorch model that uses torch.utils.checkpoint.checkpoint to TVM Relax module via torch.export, a KeyError occurs during the conversion process. The ...
When we have a dynamo_output_graph from tlparse this can be a helpful reproducer for problems in AOTAutograd. However, Dynamo cannot reliably retrace the output graphs it generates. The biggest ...
Abstract: Inductor is a new compilation backend introduced by PyTorch in 2022, consisting primarily of modules for graph analysis, operator fusion, scheduling optimization, and low-level code ...
Covid-19 broke the charts. Decades from now, the pandemic will be visible in the historical data of nearly anything measurable today: an unmistakable spike, dip or jolt that officially began for ...
一些您可能无法访问的结果已被隐去。
显示无法访问的结果